Search results for "Histone acetylation"
showing 10 items of 19 documents
On the ubiquitous presence of histone acetyltransferase B in eukaryotes
1985
AbstractHistone acetyltransferase B activity has been found in pea (Pisun sativum) seedlings. The enzyme has been partially purified and it has been found that it is highly specific for H4. The results confirm that histone acetyltransferase B occurs in 3 eukaryotic kingdoms.
Plant Responses to Abiotic Stress Regulated by Histone Deacetylases
2017
In eukaryotic cells, histone acetylation and deacetylation play an important role in the regulation of gene expression. Histone acetylation levels are modulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). Recent studies indicate that HDACs play essential roles in the regulation of gene expression in plant response to environmental stress. In this review, we discussed the recent advance regarding the plant HDACs and their functions in the regulation of abiotic stress responses. The role of HDACs in autophagy was also discussed.
'Up-regulation of histone acetylation induced by social defeat mediates the conditioned rewarding effects of cocaine
2016
Social defeat (SD) induces a long-lasting increase in the rewarding effects of psychostimulants measured using the self-administration and conditioned place procedures (CPP). However, little is known about the epigenetic changes induced by social stress and about their role in the increased response to the rewarding effects of psychostimulants. Considering that histone acetylation regulates transcriptional activity and contributes to drug-induced behavioral changes, we addressed the hypothesis that SD induces transcriptional changes by histone modifications associated with the acquisition of place conditioning. After a fourth defeat, H3(K9) acetylation was decreased in the hippocampus, whil…
Loss of the Sin3A/Rpd3 Histone De-Acetylase Complex Causes Polytene Chromosome Telomeric Fusions
2009
Immunotherapy With Human Gamma Delta T Cells—Synergistic Potential of Epigenetic Drugs?
2018
Epigenetics has emerged as one of the fastest growing concepts, adding more than 45 new publications every day, spreading through various fields ( 1). Conrad Waddington coined the term “epigenetics” in 1942; however, a multitude of definitions has been endorsed by different researchers. In essence, Waddington’s definition of “epigenetics” and its redefinition by Holiday is at the heart of cellular function. Hence, it is obvious that epigenetic regulation plays a central role also in the specification, differentiation, and functional plasticity of T lymphocytes ( 2). T-cell fate decision in progenitor cells, functional CD4 T-cell plasticity, CD8 T-cell differentiation, but also T-cell memory…
DNA methylation and histone acetylation of rat methionine adenosyltransferase 1A and 2A genes is tissue-specific.
2000
Methionine adenosyltransferase (MAT) catalyzes the biosynthesis of S-adenosylmethionine (AdoMet). In mammals MAT activity derives from two separate genes which display a tissue-specific pattern of expression. While MAT1A is expressed only in the adult liver, MAT2A is expressed in non-hepatic tissues. The mechanisms behind the selective expression of these two genes are not fully understood. In the present report we have evaluated MAT1A and MAT2A methylation in liver and in other tissues, such as kidney, by methylation-sensitive restriction enzyme digestion of genomic DNA. Our data indicate that MAT1A is hypomethylated in liver and hypermethylated in non-expressing tissues. The opposite situ…
PCAF catalyzes tha acetylation of spermidine to N8-acetylspermidine and regulates its acetylating activity on histones
2011
Post-transcriptional histone acetylation is a well known process playing a crucial role in chromatin assembly and transcription. Here, we report that PCAF, a highly conserved histone acetyltransferase (HAT), can efficiently catalyze acetylation of spermidine to N8-acetylspermidine, at low concentration. Remarkably, we found that spermidine at higher concentration can also inhibit PCAF HAT activity directed against histone H3 in vitro, confirming the in vivo data referred by Eisenberg et al. on the spermidine induced inhibition of H3 acetylation. Surprisingly when we performed HAT assay experiments at low spermidine concentration we observed an activating effect on PCAF on H3 acetylation. Ou…
Enzymes involved in the dynamic equilibrium of core histone acetylation ofPhysarum polycephalum
1992
DEAE-Scpharose chromatography of extracts from plasmodia of the myxomyccte PI~.~suru~~t ,~/.~crpl~~ho~~ revealed the presence of multiple histone acetyltransferases and histonc deacctylascs. A cyloplasmic histonc acctyltransferase B, specific for histonc H4, and two nuclear acetyltransferases Al and A2 were identilied; Al acetylates all core hislones with a preference for l-13 and H2A. whereas A2 is specific for H3 and also slightly for H2B. Two hislone deacetylases. HDI and HD2, could be discriminated. They differ with respect to subslralc speciliciiy and pH dependence. For the first time the substrate specificity of histonc deacetylascs was determined using HPLC-purilicd individual core h…
Promoter-Targeted Histone Acetylation of Chromatinized Parvoviral Genome Is Essential for the Progress of Infection
2015
ABSTRACT The association of host histones with parvoviral DNA is poorly understood. We analyzed the chromatinization and histone acetylation of canine parvovirus DNA during infection by confocal imaging and in situ proximity ligation assay combined with chromatin immunoprecipitation and high-throughput sequencing. We found that during late infection, parvovirus replication bodies were rich in histones bearing modifications characteristic of transcriptionally active chromatin, i.e., histone H3 lysine 27 acetylation (H3K27ac). H3K27ac, in particular, was located in close proximity to the viral DNA-binding protein NS1. Importantly, our results show for the first time that in the chromatinized …
Histone deacetylase A key enzyme for the binding of regulatory proteins to chromatin
1993
AbstractCore histones can be modified by reversible, posttranslational acetylation of specific lysine residues within the N-terminal protein domains. The dynamic equilibrium of acetylation is maintained by two enzyme activities, histone acetyltransferase and histone deacetylase. Recent data on histone deacetylases and on anionic motifs in chromatin- or DNA-binding regulatory proteins (e.g. transcription factors, nuclear proto-oncogenes) are summarized and united into a hypothesis which attributes a key function to histone deacetylation for the binding of regulatory proteins to chromatin by a transient, specific local increase of the positive charge in the N-terminal domains of nucleosomal c…